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Quantum Systems on Linear Groups

J. J. Sławianowski1

Discussed are quantized dynamical systems on orthogonal and affine groups. The special
stress is laid on geodetic systems with affinely-invariant kinetic energy operators. The
resulting formulas show that such models may be useful in nuclear and hadronic
dynamics. They differ from traditional Bohr–Mottelson models where SL(n, R) is
used as a so-called non-invariance group. There is an interesting relationship between
classical and quantized integrable lattices.
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functions.

PACS: 11.30.Ly, 02.20.-a, 21.60.Ev.

1. INTRODUCTION: MULTI-VALUED WAVE FUNCTIONS

In this section we deal with the simple Schrödinger quantization, i.e., with
wave mechanics on differential manifolds.

Let Q be a configuration space, i.e., differential manifold of dimension f

(the number of classical degrees of freedom). If it is endowed with some positive
volume measure µ, then the wave functions may be considered as complex scalar
fields � : Q → C. The corresponding scalar product is given by

〈�1 | �2〉 =
∫

�1(q)�2(q) dµ(q), (1)

and our Hilbert space is meant as L2(Q,µ). Usually, µ comes from some
Riemannian structure (Q,g) and then dµ(q) = √|det[gij ]|dq1 · · · dqf . As shown
and discussed by Mackey (1963) one can do quite well without any µ if wave am-
plitudes are considered not as scalars but instead as complex 1/2-weight densities,
and then simply

〈�1|�2〉 =
∫

�1(q)�2(q) dq1 · · · dqf . (2)
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The well-known text-book conditions on wave functions (does not matter scalars
or densities) are as follows: (i) � is to be one-valued all over Q, (ii) � is con-
tinuous with derivatives even at potential jumps. This is justified by probabilistic
interpretation of �̄�, probability conservation, Sturm–Liouville theory, essential
self-adjointness of certain operators.

There were, however, some arguments by Pauli and Reiss that the one-
valuedness is not the basic postulate of quantum mechanics. There are some
path-dependence phenomena and problems with globalization of local solutions
in multiply-connected Q’s.

What is a reasonable “multi-valuedness” in this context? The one that takes
Q̄, the universal covering manifold of Q with the projection π : Q̄ → Q, and
admits wave functions defined rather on Q̄ than on Q. This has also to do with
projective representations used in quantum mechanics. The procedure seems to be
reasonable when the co-images π−1(q) are finite sets.

One of possible examples is the system of identical particles, when removing
the diagonals from the Cartesian product and performing appropriate identifi-
cations (taking quotients) one damages drastically topological structure of the
configuration space.

2. RIGID BODY AND DOUBLY-VALUED
WAVE FUNCTIONS

Another example close to our subject is the rigid body, where Q � SO(3, R)
and Q̄ � SU(2). Then the projection π is 2 : 1, i.e., for any u ∈ SU(2), ±u

are projected onto the same element of SO(3, R). So, there is a natural hope
that the system of spin-less particles bounded by an appropriate potential
making it (approximately) rigid may show half-integer rotational angular mo-
mentum (Arsenović et al., 1995a,b; Barut et al., 1992; Barut and Ra̧czka,
1977; Pauli, 1939; Reiss, 1939). By “spin” in the earlier “spin-less” we mean
the usual intrinsic angular momentum treated as something primary, non-
explained in the usual rotational sense. By the way, non-explained need not
mean non-explainable; some idea about fundamental particles as rigid or de-
formable quantized tops is often coming back to physics in spite of its exotic
character.

Let Dj : SU(2) → GL(2j + 1, C) denote irreducible unitary representations
of SU(2); j runs over non-negative integers and half-integers starting from zero
(Wigner matrices). Obviously, Dj (u)+ = Dj (u)−1 = Dj (u−1) and Dj (−u) =
(−1)2jDj (u). For integer js Dj is projectable to SO(3, R); for non-integer ones
one deals with “two-valued” representations of SO(3, R). Traditional symbols for
matrix elements are D

j

m,m′ (u), where m,m′ = −j,−j + 1, . . . , j − 1, j . Accord-
ing to the Peter–Weyl theorem the wave amplitudes on SU(2) may be expanded
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into series:

�(u) =
∞∑

j=0

Tr
(
cjDj (u)

)
, cj ∈ L(2j + 1, C). (3)

Statistical interpretation in SO(3, R), �̄�(−u) = �̄�(u), imposes the “superse-
lection” rule: Dj with different “halfness” of j cannot be superposed. There are
two disjoint situations: the “fermionic" and “bosonic" ones,

�f (u) =
∞∑
i=1

Tr
(
ci−1/2Di−1/2(u)

)
, �b(u) =

∞∑
j=0

Tr(cjDj (u)). (4)

Left and right regular translations are described respectively as

� ′(u) := �(vu), c′j := cjDj (v), � ′(u) := � ′(uv), c′j := Dj (v)cj .

(5)

Let La , Ra be differential operators generating respectively left and right regular
translations,

�(u(ε̄)u(k̄)) = �(u(k̄)) + εaLa�(k̄) + o(ε), (6)

�(u(k̄)u(ε̄)) = �(u(k̄)) + εaRa�(k̄) + o(ε), (7)

where the rotation vector k̄ is used, i.e., canonical coordinates of the first kind,
u(k̄) = exp (−(i/2)kaσa), |k| ≤ 2π , and σa are, obviously, Pauli matrices. The lab-
oratory and co-moving representations of spin operators are given respectively by
the following expressions: Sa = (h/i)La , Ŝa = (h/i)Ra . Their quantum Poisson
brackets are as follows:

1

ih
[Sa, Sb] = εab

cSc,
1

ih
[Ŝa, Ŝb] = −εab

cŜc,
1

ih
[Sa, Ŝb] = 0. (8)

Obviously,

Dj (u(k̄)) = exp

(
i

2
kaSj

a

)
, (9)

where Sj are Wigner matrices for the j th angular momentum (Rose, 1995),
(
S

j

1

)2 + (
S

j

2

)2 + (
S

j

3

)2 = h2j (j + 1)Id2j+1 (10)

(Casimir invariant properties). The action of spin operators on Dj is algebraized:
SaD

j = S
j
aDj , cj 
→ cjS

j
a and ŜaD

j = DjS
j
a , cj 
→ S

j
a cj . In particular,

S3D
j

m,m′ = hmD
j

m,m′ , Ŝ3D
j

m,m′ = hm′Dj

m,m′ ,

((S1)2 + (S2)2 + (S3)2)Dj = ((Ŝ1)2 + (Ŝ2)2 + (Ŝ3)2)Dj = h2j (j + 1)Dj .
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Hamiltonian has the following form:

H = T + V = 1

2I1
(Ŝ1)2 + 1

2I2
(Ŝ2)2 + 1

2I3
(Ŝ3)2 + V (u). (11)

The above T is invariant under left regular translations (spatial rotations). For the
spherical top, I1 = I2 = I3, it is also invariant under right regular translations (ma-
terial rotations). For the symmetric top, I1 = I2, it is invariant under SO(2, R)-right
translations (material rotations about the third main axis of inertia). For the non-
degenerate case, I1 �= I2 �= I3, there are no material symmetries. Nevertheless, for
any ratio of inertial moments the metric tensor underlying the kinetic energy form
is left invariant and so is its induced Riemannian volume. Therefore, this volume
is simply proportional to the Haar measure on SU(2) (SO(3, R)), so it may be
directly obtained without embarrassing manipulations on the anisotropic metric
tensor.

It is seen that for the quantized geodetic case, V = 0, the problem is fully
algebraized and the differential eigenequation T� = E� splits into the family of
algebraic ones for cj -matrices:(

1

2I1

(
S

j

1

)2 + 1

2I2

(
S

j

2

)2 + 1

2I3

(
S

j

3

)2
)

cj = Ejcj . (12)

For the symmetric top, I1 = I2 = I , I3 = K , and even more so for the spherical
one, I = K , D

j

m,m′ are eigenfunctions of the basic operators and of T itself, and
the eigenvalues may be immediately found (the degeneracy structure is explicitly
seen):

E
j

m′ = h2j (j + 1)

2I
+

(
1

2K
− 1

2I

)
h2m′2. (13)

If V exists and is a simple combination of Dj -functions, the problem may be also
reduced to algebraic equations on the basis of Clebsch–Gordan series; however,
as a rule the resulting algebraic system is infinite (thus, in general, effective only
when some approximate truncation is possible).

In the papers (Sławianowski, 1980; Sławianowski and Słomiński, 1980) we
considered Bertrand-type models for the spherical top, i.e., isotropic models with
all trajectories closed. One of them was degenerate oscillator, V = 2κ tan2(ϕ/2),
κ > 0, where ϕ denotes the angle of deflection from the equilibrium orientation.
Due to the singularity at ϕ = π (infinite potential barrier) this is, as a matter of
fact, the problem on SO(3, R), the usual rigid body configuration space. However,
in the limit κ → 0, we obtain the free rigid body with the half-integer angular
momentum admitted. Just another illustration of the idea of “half-integerness” for
extended systems.

Everything said above remains valid for the abstract n-dimensional rigid
body, n > 2, where the 2 : 1 covering of SO(n, R) is the group Spin(n).
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3. QUANTIZED AFFINE BODIES AND DOUBLY-VALUED
WAVE FUNCTIONS

Let us now discuss quantization of an affinely-rigid body (Sławianowski,
1982, 1988) without translations. By the affinely-rigid body we mean such one
that all affine relationships between its constituents are preserved during its
motion (rigid in the sense of affine geometry). So, we deal with Schrödinger
wave mechanics on GL+(n, R) or SL(n, R) in the incompressible case. For
n = 3 such degrees of freedom are used in the droplet model of atomic nuclei
(Bohr and Mottelson, 1975). However, only kinematics is there directly ruled by
SL(3, R), the dynamics is not invariant under this group. Rather, SL(3, R) is there
the dynamical non-invariance group which enables one to investigate the energy
spectrum in terms of some ladder procedure. The whole beauty and analytical
usefulness of group-theoretic degrees of freedom are then lost. We are going to
construct kinetic energies (metric tensors) invariant under affine group.

Just as in rigid-body mechanics the most natural Hilbert space structures
are those based on Haar measure λ on GL+(n, R), SL(n, R), i.e., dλ(ϕ) =
(detϕ)−ndl(ϕ) = (detϕ)−nϕ1

1 · · ·ϕn
n, where l denoting the usual Lebesgue mea-

sure on L(n, R), i.e., the set of all n × n real matrices and, as a matter of fact, the
Lie algebra of GL(n, R). Momentum mappings (Abraham and Marsden, 1978)
corresponding to the left and right regular translations (laboratory and co-moving
representations) are given by following quantities which may be meaningfully
called affine spin (hypermomentum):

	a
b = h

i
ϕa

K

∂

∂ϕb
K

= h

i
La

b, 	̂A
B = h

i
ϕi

B

∂

∂ϕi
A

= h

i
RA

B. (14)

They are formally self-adjoint in L2(GL+(n, R), λ) but not on L2(GL+(n, R), l).
To become such in the latter case they must be completed by some algebraic terms.
Obviously, 	a

b = ϕa
A	̂A

B(ϕ−1)Bb, and La
a , RB

B are generators of the left and
right regular transformations:

�((I + α)ϕ) = �(ϕ) + αi
j Lj

i�(ϕ) + o(α), (15)

�((I + α)ϕ) = �(ϕ) + αB
ARA

B�(ϕ) + o(α). (16)

The skew-symmetric parts are referred to as spin and vorticity (Dyson):

Si
j = 	i

i − 	j
i, VA

B = 	̂A
B − 	̂B

A (17)

(shift of indices meant in the Kronecker-delta sense). For n > 2 the covering group
GL+(n, R) is 2 : 1, and GL+(n, R) is doubly-connected.

Remark 3.1. GL+(n, R) is nonlinear, and so is SL+(n, R). By “nonlinear”
we mean “non-admitting faithful representations in terms of finite-dimensional
matrices.” The doubly-connected topology of GL+(n, R) is seen from the polar
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decomposition, GL+(n, R) � ϕ = UA, where U ∈ SO(n, R) and A is symmet-
ric and positively definite. For n ≥ 3, SO(n, R) is doubly-connected, whereas
the manifold of As has evidently the R

n-topology. Topologically, the covering of
GL+(n, R) is given by the Cartesian product Spin(n, R)× Sym+(n, R); in the phys-
ical case n = 3, just SU(2)× Sym+(3, R). And then we identify skew-symmetric
tensors with pseudo-vectors:

Si
j = εi

j
kSk, Si = 1

2εij
kSj

k, VA
B = εA

B
CVC,

VA = 1
2εAB

CSB
C. (18)

Peter–Weyl expansion on GL+(3, R) gives us: �(u,A) = 	sTr (cs(A)Ds(u)),
where s are integers and half-integers starting from 0. If � is to be admissi-
ble as a probabilistically interpretable wave function on GL+(n, R), then again the
“superselection” rule must be satisfied, namely, (i) only half-integer s are admitted
in the series and � is doubly-valued in GL+(n, R), (ii) only integer s are admitted
and � (the more so �̄�) is single-valuated. Moreover, no superposition between
(i) and (ii) is admitted if � is to be statistically interpretable in GL+(n, R). So,
again the “boson-fermion” superselection rule.

Much more effective, at least in high-symmetry problems, is the two-polar
decomposition GL+(n, R) � ϕ = LDR−1, where L,R ∈ SO(n, R), and D is di-
agonal; it is convenient to write: Daa = Qa = exp(qa). Then ϕ is represented by
(L,D,R) ∈ SO(n, R) × R

n× SO(n, R); however, unlike the polar decomposi-
tion, this one is charged with some singularities and non-uniqueness (although not
very embarrassing when carefully treated). The Haar and Lebesgue measure λ, l

are then represented as follows (Barut and Ra̧czka, 1977):

dλ(ϕ) = dλ (L, q,R) = Pλ(q) dµ(L) dµ(R) dq1 · · · dqn, (19)

dl(ϕ) = dl (L,Q,R) = Pl(Q) dµ(L) dµ(R) dQ1 · · · dQn, (20)

where µ is the Haar measure on SO(n, R) and

Pλ(q) =
∏
i �=j

| sinh(qi − qj )|, Pl(Q) =
∏
i �=j

|(Qi − Qj )(Qi + Qj )|. (21)

Si
j , VA

B generate left SO(n, R)-regular translations of L,R-factors. Right reg-
ular translations are generated respectively by ρa

b = (L−1)aiSi
jL

j
b and τ a

b =
(R−1)aAVA

BRB
b. As usual, for n = 3 we represent them as follows:

ρa
b = εa

b
cρc, τ a

b = εa
b
cτc, ρa = 1

2
εab

cρb
c, τa = 1

2
εab

cτ b
c.

(22)

To deal with the doubly-valued functions, i.e., with the covering manifold, we
begin with SU(2) × R

3× SU(2) as an auxiliary tool. The Peter–Weyl theorem
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gives us the following expansion:

�(u, q, v) =
∑
s,j

s∑
m,n=−s

j∑
k,l=−j

Ds
mn(u)f sj

nk
ml

(q)Dj
kl

(
v−1) , (23)

or for eigenstates of S3, V3 with hm, hl-eigenvalues:

�
sj

ml(u, q, v) =
s∑

n=−s

j∑
k=−j

Ds
mn(u)f sj

nk (q)Dj
kl(v

−1). (24)

Obviously, here h2s(s + 1) and h2j (j + 1) are eigenvalues of S- and V-Casimirs.
But SU(2) × R

3 × SU(2) is not diffeomorphic with GL+(3, R). One can show
that the earlier expressions are well-defined wave functions on GL+(3, R), i.e.,
“good” doubly-valued wave functions on GL(3, R) if (j − s) is an integer, i.e.,
j and s have the same “halfness.” Besides, some additional conditions must be
satisfied to take into account that the two-polar decomposition of GL+(3, R) in
terms of SO(3, R) × R

3 × SO(3, R) is non-unique (Sławianowski, 1982, 1988).
The earlier wave functions are single-valued in GL(3, R), when s and j are
integers. So, 	s,j :(j−s)∈Z and 	s,j∈N∪{0} are well defined respectively on GL(n, R)
and GL+(n, R). And again there is the “superselection": the latter sum can not be
combined with 	s,j , where s = m + 1/2, j = n + 1/2, and m, n are non-negative
integers.

We are interested in affinely-invariant geodetic models, i.e., in free affine
top. Let us stress, however, that strictly speaking purely geodetic model would
be non-physical because it would predict the non-limited dilatational expansion
and collapse (although in the infinite time). Therefore, the logarithmic dilatational
parameter q = (q1 + q2 + · · · + qn)/n (n = 3 in the physical case; sometimes
n = 2 or n = 1) must be stabilized by some simple model potential V (q), e.g.,
harmonic oscillator Vosc = (κ/2)q2 or the infinite potential well. It turns out that
the incompressible (thus applicable in nuclear and hadronic dynamics) geodetic
SL(n, R)-models are realistic both on the classical and quantum level and may
predict bounded vibrating behaviour (and below-threshold discrete spectrum in
quantum theory). In analogy to the spherical rigid body we can postulate the left
and right invariant kinetic energy on GL+(n, R). On the classical level it would
be given by the Casimir expression:

T = A

2
Tr(�2) + B

2
(Tr�)2 = A

2
Tr(�̂2) + B

2
(Tr�̂)2, (25)

where �, �̂ are Lie-algebraic objects, just the affine counterparts of the laboratory
and co-moving representations of the angular velocity,

� = dϕ

dt
ϕ−1, �̂ = ϕ−1 dϕ

dt
= ϕ−1�ϕ. (26)
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The corresponding Laplace–Beltrami operator is expressed in the two-polar terms
as follows (in n dimensions):

Taff−aff = − h2

2A
Dλ + h2B

2A(A + nB)

∂2

∂q2

+ 1

32A

∑
a,b

(
ρa

b − τ a
b

)2

sinh2 qa−qb

2

− 1

32A

∑
a,b

(
ρa

b + τ a
b

)2

cosh2 qa−qb

2

.

The differential operator Dλ is given by the following expression:

Dλ = 1

Pλ

∑
a

∂

∂qa
Pλ

∂

∂qa
. (27)

This kinetic energy is not positively definite, but its negative term may encode
the attraction (strange “centrifugal” attraction) of deformation invariants, whereas
its positive counterpart describes the repulsive forces (infinite at coincidence sit-
uation). Their balance leads on the classical level to nonlinear elastic vibrations
with an open subset of bounded trajectories and an open subset of non-bounded
(“dissociated”) ones; everything, of course, under the assumption of approximate
incompressibility, when some dilatation-stabilizing potential V (q) is used. On the
quantum level this means that both the discrete spectrum and the higher-placed
continuous one do occur.

For certain reasons it may be convenient to discuss models Tmet−aff invariant
under spatial rotations (left translations by orthogonal elements) and right affine
transformations, and also conversely, the models Taff−met with opposite symmetry
properties. Classically:

T met−aff = I

2
Tr(�T �) + A

2
Tr(�2) + B

2
(Tr�)2 , (28)

T aff−met = I

2
Tr(�̂T �̂) + A

2
Tr(�̂2) + B

2
(Tr�̂)2. (29)

The first one is a discretization of the Arnold model of ideal fluid as a Hamiltonian
system on the group of volume-preserving diffeomorphisms. The second one does
not obey the spatial metric relations like, e.g., electrons in crystals, for which the
metric tensor is replaced by the effective mass tensor; similar things happen in the
theory of defects in solids. After quantization:

Tmet−aff = Taff−aff [A 
→ I + A] + I

2
(
I 2 − A2

)‖S‖2, (30)

Taff−met = Taff−aff [A 
→ I + A] + I

2
(
I 2 − A2

)‖V‖2. (31)
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The shorthand A 
→ I + A means obviously “with A replaced by I + A”; ‖S‖2

and ‖V‖2 are squared magnitudes of spin and vorticity, i.e., Casimirs:

‖S‖2 = −1

2
Sa

bSb
a, ‖V‖2 = −1

2
VA

BVB
A. (32)

For the proper choice of I , A, B, these kinetic energies are positively definite.
For the dynamically non-affine but physically-justified macroscopically-elastic
models with double isotropy, T d′A = (I/2)Tr

(
ϕ̇T ϕ̇

)
, we have

Td′A = − h2

2I
Dl + 1

8I

∑
a,b

(
ρa

b − τ a
b

)2

(Qa − Qb)2
+ 1

8I

∑
a,b

(
ρa

b + τ a
b

)2

(Qa + Qb)2
, (33)

where

Dl = 1

Pl

∑
a

∂

∂qa
Pl

∂

∂qa
. (34)

Without potential, the earlier geodetic model is non-physical. There are only purely
decaying, scattering motions. With some well-adapted potentials invariant under
left and right orthogonal translations such a model is useful in macroscopic and
molecular problems without, however, any advantage typical for invariant geodetic
systems on groups.

For geodetic models and, more generally, for the doubly-isotropic potential
models, V = V (q1, . . . , qn) (including those SL(n, R)-geodetic with V (q) stabi-
lizing dilatations), the quantities S2 = �2, V2 = τ 2 are constants of motion, and
s, j are good quantum numbers. Then, for fixed s, j the stationary Schrödinger
equation splits into the family of reduced Schrödinger equations for matrix ampli-
tudes f sj depending only on deformation invariants q1, . . . , qn (by deformation
invariants one means, in general, the functions of the matrix ϕ invariant under
left and right regular translations by the orthogonal group SO(n, R)); the depen-
dence on angles is algebraized: Hsj f sj = Esjf sj . For the affine–affine model the
reduced Hamiltonian has the form

Hsj

aff−afff
sj = − h2

2A
Df sj + h2B

2A(A + nB)

∂2f sj

∂q2
+ V (qa)f sj

+ 1

32A

∑
a,b

(←−
S

j

ab − −→
Ss

ab

)2

sinh2 qa−qb

2

f sj − 1

32A

∑
a,b

(←−
S

j

ab + −→
Ss

ab

)2

cosh2 qa−qb

2

f sj ,

where
←−
S

j

abf
sj := f sjS

j

ab,
−→
Ss

abf
sj := Ss

abf
sj . The symbols s, j suggest the dimen-

sion n = 3 and the usual range of these quantum numbers. Nevertheless, the
formula may be meant for the general n, then s, j simply run over the set of
labels of irreducible unitary representations of SO(n, R), and Ss

ab, S
j

ab are basic
(hermitian) generators of these representations (9). For n = 3 they are simply the
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standard Wigner matrices of angular momentum. The potential V is necessary
only for stabilization or constraining dilatations; on SL(n, R) the potential-free
geodetic model is satisfactory.

For the metric-affine model the reduced Hamiltonian is given by

Hsj

met−aff = Hsj

aff−aff[A 
→ I + A] + I

2(I 2 − A2)
h2C(2, s), (35)

where −C(2, s) is the eigenvalue of the second-order Casimir invariant built of
generators of regular translations on SO(n, R) in the sth representation:

1

2
La

bLb
aD

s = C(2, s)Ds, i.e.,
1

2

∑
a,b

Ss
abS

s
ba = h2C(2, s)IN , (36)

where IN denotes the N × N unit matrix, and N is the dimension of the sth
irreducible representation of SO(n, R). Obviously, in the interesting physical case
n = 3, N = 2s + 1, s = 0, 1/2, 1, . . ., and C(2, s) = s(s + 1).

For the affine–metric model we have

Hsj

aff−met = Hsj

aff−aff[A 
→ I + A] + I

2(I 2 − A2)
h2C(2, j ). (37)

In a sense, Hsj

aff−aff and occurrence of additional terms proportional to h2C(2, s),
h2C(2, j ) is extremely interesting and seems to be confirmed by the nuclear and
hadronic experimental data respectively as the angular momentum and isospin
terms. In the incompressible case, when B = 0, the quantized geodetic model
(without potential) is sufficient for predicting both the discrete and continuous
spectrum (bounded and decaying situations). In the compressible case, dilatations
must be stabilized by some model potential V (q). Appearing of the discrete and
continuous spectra is controlled by the interplay between s and j quantum numbers
(they are good quantum numbers corresponding to quantum constants of motion).

The appearance of the formal similarity of the above expressions to integrable
lattices formulas is not accidental and may be helpful in the analysis of Sutherland
and Calogero-Moser lattices.

4. SOME FINAL REMARKS

Linear group GL(3, R) has been used in nuclear physics as the group which
rules geometry of the collective degrees of freedom in the droplet model of nuclei
(Bohr and Mottelson, 1975; Rosensteel and Troupe, 1998). However, it was not
there the group of dynamical symmetries preserving the Hamiltonian. There are
models where GL(3, R) is the so-called non-invariance group. We suggest models
which seem to be viable and use GL(3, R) as the group of dynamical symmetries.



Quantum Systems on Linear Groups 2039

ACKNOWLEDGMENTS

The author is greatly indebted to the Organizers of the IQSA Conference,
Denver 2004, first of all to professor Franklin Schroeck Junior, for their cordial
hospitality and financial support.

REFERENCES

Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics, 2nd ed., The Benjamin-Cummings
Publishing Company, London-Amsterdam-Sydney-Tokyo.
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